rlttmanmead November / December 2015

Creating a Data Reservoir with
Oracle GoldenGate

by Mark Rittman

Replicate and stream data from Oracle Database 12c to Oracle Big Data Appliance.

Many organizations are looking to extend their Oracle data warehouses with Hadoop and NoSQL
technology, adding Oracle Big Data Appliance engineered systems to their existing Oracle Exadata
Database Machines to create what has been termed a “data reservoir.” Hadoop- and NoSQL-based
data reservoirs built on Oracle Big Data Appliance extend the storage capacity of an Oracle Exada-
ta-based data warehouse. They can be used to hold unstructured and semistructured data sets and
are often used as an initial landing and preprocessing area in a data warehouse.

Typically, data loading into Oracle Big Data Appliance occurs in the form of real-time streams of data
taken from file and event sources. Oracle GoldenGate for Big Data 12c can extend this capability to
transactional data loading directly into Apache Hive and Hadoop Distributed File System (HDFS) data
structures. Oracle GoldenGate can also interface with Apache Flume, the Oracle Big Data Appliance’s
standard real-time ingestion service, to provide a single service that streams incoming real-time data to
a data reservoir.

In this article, I'll look at what's involved in configuring Oracle GoldenGate for Big Data 12c along with
Oracle GoldenGate 12c for Oracle Database to capture database transactions and replicate them to a
Hadoop-based data reservoir. You can run through the steps in this article by using Oracle Big Data
Lite Virtual Machine, which you can download from Oracle Technology Network. Oracle GoldenGate for
Big Data 12c and Oracle GoldenGate 12c¢ (for Oracle Database) have already been installed on the
virtual machine, along with Oracle Database 12c, providing an environment similar to what you'd find
on an Oracle Big Data Appliance but without the need to install the individual software components I'll
be demonstrating in this article.

How Oracle GoldenGate Streams Database Transactions into a
Hadoop Environment

Oracle GoldenGate can be used to capture and transport database transactions between heteroge-
neous environments running on distributed server platforms. For example, you can capture database
transactions from a MySQL database running on a Linux server and transport them to Oracle Database
running on Oracle Exadata. Oracle GoldenGate uses a decoupled architecture, where a capture or
extract process on the source database server monitors database logs and writes activity data to a trail
file, which is then routed to target platforms in a compressed and encrypted form by the pump pro-
cess. Next, a collector process on the target platform(s) takes this trail file data and passes it to the
replicate process, which then writes the transactions to the target platform.

When you're working with sources of big data, Oracle GoldenGate for Big Data 12c uses the same
capture, trail file, and pump processes to collect transaction activity on the source database server. But
in this case, Oracle GoldenGate Adapter for Apache Flume then takes log activity from the trail file and
sends it via an Apache Flume channel to a Flume agent in Avro remote procedure call (RPC) message
format. The Flume agent receiving these flume events then writes the database transaction activity and
the replicated data to files in the HDFS file system, as shown in Figure 1. This information is then used
as the datasource for an Apache Hive table. Configuration files provide parameter values for the pump,
Oracle GoldenGate Adapter for Apache Flume, and Apache Flume processes, with all configuration
performed with the Oracle GoldenGate software command-line interface (GGSCI) shell. Note that in
this example, all the components are contained within the same virtual machine environment, so you
won't be using the pump process, because Oracle GoldenGate Adapter for Apache Flume can read
directly from the trail file produced by the database extract process.

Flume Agent
- h HDES/
ApTure ump

n Source Channcl Sink L

Pump Adapeer Flume
Parameter | | Properties Config fibe
file file

Figure 1: Oracle GoldenGate Adapter for Apache Flume Data Flow

L

Source
Darabase

Configuring and enabling Oracle GoldenGate for Big Data 12c to replicate data between an Oracle
Database 12c table and a Hive table running on Hadoop requires the following tasks to be completed
in order (I'll discuss the stages in detail shortly):

1: Configure the Oracle Database 12c environment for Oracle GoldenGate integrated capture.
2: Create a datasource definition file for the source database schema and table.

3: Configure Oracle GoldenGate for Oracle Database 12¢, and create the extract process to capture
the database transactions, using the datasource definition file generated in the previous step.

4: Configure and start a Flume agent to listen for Avro RPC message data from Oracle GoldenGate
Adapter for Apache Flume.

5: Configure and start up Oracle GoldenGate Adapter for Apache Flume (again using the datasource
definition file created in step 2), which will read from the trail file and send its log events to the
Flume agent via Avro RPC.

6: Using the same table structure as the source Oracle Database table, create an external Hive table
over the HDFS directory location where the Flume agent writes its incoming data, and then do a
SELECT against this table to check that transactions from the source are being replicated
successfully.

Configuring Oracle Database 12c for Integrated Capture and Creating the
Extract Process

Oracle Database 12c on the Oracle Big Data Lite Virtual Machine needs to be configured for ARCHIVEL-
OG mode and then enabled for Oracle GoldenGate for Oracle Database 12c integrated capture mode
and supplemental logging. To do this, open the terminal application from the Oracle Linux desktop
toolbar, via Applications -> System Tools -> Terminal. Enter the following commands to connect to
SQL*Plus as the SYS user:

sqlplus sys/welcomel as sysdba

shutdown immediate

startup mounts;

alter database archivelogs

alter database opens

alter system set enable_goldengate_replication=true scope=boths
alter database add supplemental log datas

alter database force loggings

alter system switch logfiles

exits

To create the schema and the table used in this example, download the create_example_db_data.sql
script, save it to the default /home/oracle/Downloads directory, and run it with SQL*Plus. At the termi-
nal command-line prompt, enter

cd sHOME/Downloads
sqlplus systemdorcl/welcomel @d./create_example_db_data-sql

From the terminal prompt, enter the following commands to generate a source data definition file to
use as part of the Flume agent configuration process later:

cd /ull/ogg
vi dirprm/defgg_test.prm

DEFSFILE ./dirdef/gg_test_hive-def PURGE
userid system. password welcomel
SOURCECATALOG orcl

TABLE gg_test.logss
./defgen PARAMFILE ./dirprm/defgg_test.prm

This creates a definition (DEF) file that describes the schema and table(s) the extract process is using in
the trail file. Normally, you'd be able to use this file as is, but because you are extracting data from an
Oracle Database 12c container database, you'll need to edit the file to remove the reference to the
container database (the target Hive database uses SCHEMA.TABLE naming). Do this with the terminal
application. Open the DEF file for editing:

vi ./dirdef/gg_test_hive.def
Then change the line that currently reads

Definition for table ORCL.GG_TEST.LOGS

to instead read
Definition for table GG_TEST.LOGS

Next, create an Oracle GoldenGate extract process called ORAEXT. The process will capture changes
from the new table and map the resulting rows to a Hive table called LOGS in the gg_test Hive data-
base. From the terminal prompt, enter the following command to create the oraext.prm parameter file
for the ORAEXT process:

cd /ull/o0gg
vi dirprm/oraext-prm

extract oraext

userid system. password welcomel
discardfile ./dirrpt/oraext.dsc- purge
targetdefs ./dirdef/gg_test_hive-.def
exttrail ./dirdat/et

sourcecatalog orcl

table gg_test-logs target gg_test-.-logss

While still using the terminal interface, employ the GGSCI shell to enable supplemental schema logging
for the schema created earlier and then create and start the ORAEXT extract process:

./g9gsci

start mgr

dblogin userid systemdorcl password welcomel

add schematrandata gg_test allcols

dblogin userid system password welcomel

register extract oraext database container (orcl)
add extract oraexta integrated tranlog-. begin now
add exttrail ./dirdat/et. extract oraext

start oraext

info all

After typing the last command, you should see the following GGSCI output:
Program Status GROUP Lag at Chkpt Time Since Chkpt

MANAGER RUNNING
EXTRACT RUNNING ORAEXT 00:00:03 oo0:-00:09

Note that the status will initially appear as STARTING but should change to RUNNING after a short
while. If all is correct, enter exit to exit the GGSCI command-line shell.

Configuring Apache Flume and Oracle GoldenGate Adapter for Apache Flume

Now that your Oracle Database source is writing database transactions to the trail file, using Oracle
GoldenGate 12c for Oracle Database integrated capture mode, you can configure Oracle GoldenGate
Adapter for Apache Flume and the Flume agent that will receive and process these transactions for
appending to the Hive table.

Configure the Flume agent that will receive flume events in Avro format from Oracle GoldenGate
Adapter for Apache Flume, and then write them to the HDFS file system in the format Hive requires for
table data storage. Again, from the terminal command line, create a configuration file—this time as the
place the Flume agent should receive and store the data passed to it from Oracle GoldenGate Adapter
for Apache Flume, as shown in Listing 1.

Code Listing 1: Creating the configuration file for the Flume agent

al.channels = cl

al.sources = rl

al.sinks = k@2

al.channels.cl-type = memory
al.sources-rl.channels = cl
al.channels.cl-capacity = 1000
al.-channels.cl-transactionCapacity = 1000
al.sources.rl.type = avro
al.sources.rl.bind = bigdatalite
al.sources-.rl.port = 4545

al.sinks.k2.type = hdfs

al.sinks.-k2.channel = cl
al.sinks-.k2-hdfs-path = /user/oracle/gg/Z%Z{SCHE-
MA_NAME}/Z{TABLE_NAMEY}
al.sinks.-k2.-hdfs.filePrefix = Z{TABLE_NAMEZ}_
al.sinks.-k2-hdfs.writeFormat=Writable
al.sinks.-k2.-hdfs.rolllnterval=0
al.sinks.-k2.-hdfs.hdfs-rollSize=104857k
al.sinks.-k2-hdfs.rollCount=0
al.sinks.-k2.-hdfs.batchSize=1000
al.sinks.k2.-hdfs-fileType=DataStreanm

Next, start the Flume agent with this configuration file (using the Linux nohup command to ensure that
the agent continues running even after you have exited the terminal command-line session):

nohup /usr/lib/flume-ng/bin/flume-ng agent --conf conf -f /usr/lib/
flume-ng/conf/gg-flume.conf -n al 2>8&1 > /tmp/gg-flume.out &

The next step is to create a properties file and a parameter file for Oracle GoldenGate Adapter for
Apache Flume, using another extract process to read data from the trail file created by the ORAEXT
process you set up earlier (as previously mentioned, you don't need an Oracle GoldenGate pump
process in this example, because the database extract process and the Oracle GoldenGate Adapter for
Apache Flume extract process are on the same Linux file system).

When this second extract process is running, it will take database log activity and event activity from
the trail file and turn them into Flume events. These Flume events will be sent to the Flume agent,
using the Avro RPC data exchange format over port 4545. At the terminal prompt, enter the code in
Listing 2 to create the Apache Flume properties file.

Code Listing 2: Creating the Apache Flume properties file

cd
vi

/ulll/ogg
./dirprm/flume.props

gg-handlerlist=ggflume
gg-handler.ggflume
flume.FlumeHandler
gg-handler.ggflume.

.type=com.goldengate.delivery-.handler.-
host=bigdatalite

gg-handler.
gg-handler.

ggflume.
ggflume

port=4545
.rpcType=avro

99-

99

99 -

.handler.
handler.

handler.

ggflume.

ggflume.
ggflume.

delimiter=\u000L

mode=tx
includeOpType=false

Indicates if the
output 1in

the delimited separated values

true - Operation time stamp will be included in the output

false - Operation time stamp will not be included in the output
Default :- true

gg-handler.-ggflume.includeOpTimestamp=false

operation time stamp should be included as part of

Optional properties to use the transaction grouping functionality
gg-handler.ggflume.maxGroupSize=1000
gg-handler.ggflume.minGroupSize=1000

native
goldengate-.
goldengate-.
goldengate-.
goldengate-.
goldengate-.
goldengate-.

library config ###
userexit.nochkpt=TRUE
userexit.timestamp=utc
log-logname=cuserexit
log-level=INFO
log-tofile=true
userexit.writers=javawriter

99-log=loghj
gg-log-.level=info

gg-report-time=30sec
#gg.classpath=AdapterExamples/big-data/flume/target/flume-1lib/x%
#gg.classpath=AdapterExamples/big-data/flume/bin/%
gg-classpath=AdapterExamples/big-data/flume/bin/*x:/usr/lib/ha-
doop/*:/usr/
lib/hadoop/lib/*%:/usr/lib/hadoop/client/*:/etc/hadoop/-
conf.bigdatalite:/ulll/

connectors/*:/usr/lib/flume-ng/lib/%

javawriter.stats.full=TRUE

javawriter.stats-.display=TRUE

javawriter-.bootoptions=-Xmx32m -Xms32m -Djava.class.path=ggjava/ggjava-. jar
-Dlogltj.configuration=file:///ull/ogg/cfg/loglij-properties

Next, create the parameters file, which references the new properties file as well as the DEF file created
earlier. At the terminal command-line prompt, create the file by entering

vi ./dirprm/flume.prm

EXTRACT flume

SETENV (GGS_USEREXIT_CONF = "dirprm/flume.props™)

CUSEREXIT libggjava_ue.so CUSEREXIT PASSTHRU INCLUDEUPDATEBEFORES
GETUPDATEBEFORES

NOCOMPRESSUPDATES

-- The definition file-. generated before

SOURCEDEFS ./dirdef/gg_test_hive-.def

DISCARDFILE ./dirrpt/flume-.dsc. purge

TABLE gg_test-.logss

Finally, create and start up the Oracle GoldenGate Adapter for Apache Flume extract process, using the
GGSCI command-line interface:

./ggsci

add extract flume. exttrailsource ./dirdat/et
start flume

info all

After entering info all, you should see the two extract processes and the Oracle GoldenGate
Manager process running successfully:

Program Status GROUP Lag at Chkpt Time Since Chkpt
MANAGER RUNNING

EXTRACT RUNNING FLUME 00:00:00 00:00:02

EXTRACT RUNNING ORAEXT 00:00:10 00:00:02

After entering info all, you should see the two extract processes and the Oracle GoldenGate
Manager process running successfully:

Creating the Apache Hive Target Table and Testing the End-to-End Process

Oracle GoldenGate Adapter for Apache Flume should now be running and waiting for database
transactions to take place for the GG_TEST .LOGS Oracle Database table, which will then be sent to the
Flume agent and written into the HDFS within the Hadoop environment. To view this data in the form
of a Hive table, you must create an external Hive table and specify the directories the Flume agent is
writing to for the table’s LOCATION clause. At the terminal command-line prompt, start the Hive shell
and enter the following commands:

hive

create database IF NOT EXISTS gg_tests

drop table IF EXISTS gg_test-.logss

create external table IF NOT EXISTS gg_test-logs(log_id int-
log_message stringa. log_date string) row format delimited fields
terminated by '\uOO0O0lL' lines terminated by '\n' location '/user/
oracle/gg/gg_test/logs/"'s

exits

Load some data into the source GG_TEST Oracle Database table, using a procedure installed earlier
(when you ran the script to create the source schema and table). From the terminal command-line
prompt, execute the procedure from SQL*Plus by entering

sqlplus gg_testdorcl/welcomel
begin P_GENERATE_LOGS(100)3 ends
/

Finally, return to the Hive command-line interface to see whether these new rows have been
transported to the Hadoop environment. From the terminal command-line prompt, enter the following
commands:

hive
select CONCAT('Rows loaded from gg_Test-logs into HDFS via Flume: ',
count(x)) from gg_test-logss

and check that the output matches the following:

Rows loaded from gg_Test-logs into HDFS via Flume: 100

Congratulations! You've now successfully set up and enabled real-time replication between your Oracle
Database and Hadoop environment on the Oracle Big Data Lite Virtual Machine.

Conclusion

As I've shown in this article, Oracle GoldenGate for Big Data 12¢c makes it possible to stream database
transactions from Oracle Database and other database platforms into a Hadoop-based data reservoir,
using the same Apache Flume ingest system for handling log and event sources. With Oracle
GoldenGate for Oracle Database 12c and its integrated capture mode, it's simple and easy to enable
this type of replication and stream data from Oracle Database 12c into your Oracle Big Data Appliance.

